Easy-First Dependency Parsing with Hierarchical Tree LSTMs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Easy-First Dependency Parsing with Hierarchical Tree LSTMs

We suggest a compositional vector representation of parse trees that relies on a recursive combination of recurrent-neural network encoders. To demonstrate its effectiveness, we use the representation as the backbone of a greedy, bottom-up dependency parser, achieving state-of-the-art accuracies for English and Chinese, without relying on external word embeddings. The parser’s implementation is...

متن کامل

Dependency Parsing with LSTMs: An Empirical Evaluation

We propose a transition-based dependency parser using Recurrent Neural Networks with Long Short-Term Memory (LSTM) units. This extends the feedforward neural network parser of Chen and Manning (2014) and enables modelling of entire sequences of shift/reduce transition decisions. On the Google Web Treebank, our LSTM parser is competitive with the best feedforward parser on overall accuracy and n...

متن کامل

Easy-First Dependency Parsing of Modern Hebrew

We investigate the performance of an easyfirst, non-directional dependency parser on the Hebrew Dependency treebank. We show that with a basic feature set the greedy parser’s accuracy is on a par with that of a first-order globally optimized MST parser. The addition of morphological-agreement feature improves the parsing accuracy, making it on-par with a second-order globally optimized MST pars...

متن کامل

Easy-First POS Tagging and Dependency Parsing with Beam Search

In this paper, we combine easy-first dependency parsing and POS tagging algorithms with beam search and structured perceptron. We propose a simple variant of “early-update” to ensure valid update in the training process. The proposed solution can also be applied to combine beam search and structured perceptron with other systems that exhibit spurious ambiguity. On CTB, we achieve 94.01% tagging...

متن کامل

Greedy Transition-Based Dependency Parsing with Stack LSTMs

We introduce a greedy transition-based parser that learns to represent parser states using recurrent neural networks. Our primary innovation that enables us to do this efficiently is a new control structure for sequential neural networks—the stack long short-term memory unit (LSTM). Like the conventional stack data structures used in transition-based parsers, elements can be pushed to or popped...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the Association for Computational Linguistics

سال: 2016

ISSN: 2307-387X

DOI: 10.1162/tacl_a_00110